Convex relaxations of structured matrix factorizations
نویسنده
چکیده
We consider the factorization of a rectangular matrix X into a positive linear combination of rank-one factors of the form uv, where u and v belongs to certain sets U and V , that may encode specific structures regarding the factors, such as positivity or sparsity. In this paper, we show that computing the optimal decomposition is equivalent to computing a certain gauge function of X and we provide a detailed analysis of these gauge functions and their polars. Since these gauge functions are typically hard to compute, we present semi-definite relaxations and several algorithms that may recover approximate decompositions with approximation guarantees. We illustrate our results with simulations on finding decompositions with elements in {0, 1}. As side contributions, we present a detailed analysis of variational quadratic representations of norms as well as a new iterative basis pursuit algorithm that can deal with inexact first-order oracles.
منابع مشابه
Global Optimality in Tensor Factorization, Deep Learning, and Beyond
Techniques involving factorization are found in a wide range of applications and have enjoyed significant empirical success in many fields. However, common to a vast majority of these problems is the significant disadvantage that the associated optimization problems are typically non-convex due to a multilinear form or other convexity destroying transformation. Here we build on ideas from conve...
متن کاملRiordan group approaches in matrix factorizations
In this paper, we consider an arbitrary binary polynomial sequence {A_n} and then give a lower triangular matrix representation of this sequence. As main result, we obtain a factorization of the innite generalized Pascal matrix in terms of this new matrix, using a Riordan group approach. Further some interesting results and applications are derived.
متن کاملPursuits in Structured Non-Convex Matrix Factorizations
Efficiently representing real world data in a succinct and parsimonious manner is of central importance in many fields. We present a generalized greedy pursuit framework, allowing us to efficiently solve structured matrix factorization problems, where the factors are allowed to be from arbitrary sets of structured vectors. Such structure may include sparsity, non-negativeness, order, or a combi...
متن کاملStructured Sparsity: Discrete and Convex approaches
Compressive sensing (CS) exploits sparsity to recover sparse or compressible signals from dimensionality reducing, non-adaptive sensing mechanisms. Sparsity is also used to enhance interpretability in machine learning and statistics applications: While the ambient dimension is vast in modern data analysis problems, the relevant information therein typically resides in a much lower dimensional s...
متن کاملOn Convex Programming Relaxations for the Permanent
In recent years, several convex programming relaxations have been proposed to estimate the permanent of a non-negative matrix, notably in the works of [GS02, Gur11, GS14]. However, the origins of these relaxations and their relationships to each other have remained somewhat mysterious. We present a conceptual framework, implicit in the belief propagation literature, to systematically arrive at ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1309.3117 شماره
صفحات -
تاریخ انتشار 2013